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PREFACE

This report outlines recent efforts to use finite element techniques for solving the wave equation
of underwater acoustic propagation in large ocean regimes. This effort is a part of a computationally
intensive probabilistic acoustics program whose major current goal is to develop models for the propaga-
tion of the moments of the acoustic field in regions where the boundaries are random surfaces. With
the rapidly increasing computer power of large main-frame computers, indeed even large minicomput-
ers augmented with powerful array processors, the possibility of using an exact technique as the finite
element method (FEM) for solving the wave equation, even in such complicated regimes, needs to be
addressed. In the near term this method is expected to be especially applicable for benchmark or
exact-solution calculations subsequently used to evaluate large complex computer codes, since the
length of time that such calculations take is not, in general, the governing parameter. Future advances
in computer design can make the FEM also attractive for solving problems in realistic scenarios and for
use in a production mode. For relatively small source-to-receiver ranges at low frequency, the FEM
can already be used as a predictor of transmission loss in a complicated environment.
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THE NUMERICAL SOLUTION OF
UNDERWATER ACOUSTIC PROPAGATION PROBLEMS USING

FINITE DIFFERENCE AND FINITE ELEMENT METHODS

INTRODUCTION

In this report, we discuss various aspects of the numerical solution of underwater acoustic-wave
propagation problems. The propagation of acoustic energy in the ocean involves the interaction
between acoustic-wave propagation in fluids and stress-wave propagation in solids. Thus, a general
mathematical model involves the coupling of the acoustic-wave equation with the elastic-wave equation
and the specification of suitable interface and boundary conditions. Only simple wave-propagation prob-
lems can be solved analytically. Hence, the approximate solution of time-harmonic and time-dependent
models in two and three dimensions is important to treat effectively acoustic propagation in a general
ocean environment. Note that we are considering linear, forward, deterministic propagation problems
here. However, many of the methods may also be applicable to nonlinear, inverse, and stochastic prob-
lems.

Various computational approaches have been developed and applied to simplified propagation
models. These include parabolic-equation and normal-mode models, asymptotic methods, and others;
see, for example, Ref. 1 for a survey of various models and numerical techniques. Although each of
these techniques can be quite effective under suitable assumptions, there are many important problems
for which it is necessary to treat the complete wave-propagation model described above in the low to
intermediate frequency range. Such models can include lateral inhomogeneities, multiple irregular
interfaces and boundaries, full angle propagation, and backscattering. This occurs, for example, when
the ocean bottom must be taken into account, such as in shallow-water propagation and in deep water
at very low frequencies. The interaction of acoustic and seismic waves with a complicated ocean bot-
tom is an important and difficult problem. Another important example of a complicated propagation
problem occurs when a layer of ice is present on the ocean surface.

Finite difference and finite element methods have proved to be very effective techniques for solv-
ing approximately boundary and initial-value problems of the type described above. However, to prop-
erly resolve the waves it is necessary to decrease the spatial mesh sizes as the frequency increases. This
can result in problems with very large numbers of degrees of freedom as the frequency and/or spatial
dimensions increase. The size of the problems that can be effectively treated numerically depends on
various factors, such as the computer power, as well as the mathematical and modeling techniques
available. We shall discuss these and other issues in more detail later and consider various possibilities
for treating large, complicated ocean-propagation problems more efficiently.

We close this section by outlining the remainder of this report. In the second section, we con-
sider a model problem involving the two-dimensional Helmholtz equation with a variable sound speed;
this was treated using a finite-element code implemented at NRL on the VAX 11/780 and modified to
treat underwater acoustic-propagation problems. We briefly describe some features of the finite-
element algorithm and the treatment of radiation boundary conditions. A distinctive feature of the
code is the implementation of a recently developed iterative method [2] for solving the resulting large,
sparse, indefinite, non-self-adjoint system of equations. This allowed for the efficient solution of over
35,000 complex equations on a relatively small computer, since large matrices did not have to be stored
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or inverted. We describe some of the numerical results obtained after applying this code to the model
problem. Furthermore, we discuss additional modifications that can be made to the code to improve its
efficiency and extend its applicability to more general propagation models.

In the third section, we consider the general situation of the coupled acoustic/elastic wave equa-
tion in two and three dimensions. We discuss finite-difference and finite-element methods for solving
both the time-harmonic and time-dependent model. The numerical techniques for solving the time-
harmonic and time-dependent problems are very different, as are the numerical difficulties that are
encountered. Various issues are considered that are important in determining the size of the problem
that can be adequately treated. Finally, in the fourth section we summarize our findings.

A MODEL PROBLEM

In this section we describe a model underwater acoustic propagation problem based on the two-
dimensional Helmholtz equation with a variable sound speed. We also describe results obtained after
implementing a finite-element code and modifying it to treat this propagation model. Finally, we indi-
cate several ways of improving the capabilities of this code.

The Model and the Numerical Algorithm

The Helmholtz equation for a cylindrically symmetric geometry and a harmonic source is given by

Au (rz) + K n2 (rz)u(rz) = 0,

where z is the depth measured downard from the ocean surface, r is the range, u (rz) is the acoustic
pressure,

r = r r~ ar j z2

is the Laplacian in cylindrical coordinates, the reference wave number is Ko = 2irf/co, f is the source
frequency, c0 is a reference sound speed, the refractive index n(rz) = co/c(rz), and c(rz) is the
sound speed. For simplicity, we consider a region of the ocean with a flat surface and a flat bottom, so
that the region D is a rectangle (see Fig. 1). We assume an ocean depth of 5000 m, an initial range
given by r = R 1, and a final range given by r = R 2.

Z 0- ulO

u g D I u=0

Z =5000 M - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

aur= R1 a _Z = ° r= RDIS r= R2

Fig. I - Region for the model problem

Our boundary conditions are given by

Top: u (r, 0) = 0, (la)

Bottom: aU (r, 5000) = 0, ( b)
az
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and

Left side: u(R1,z) = g(z), - (Ic)

where g (z) is a specified initial pressure field. The boundary condition at r R 2 is chosen so as to
model the outgoing radiation of energy. Since there is no backscattering, we may model this outgoing
radiation condition by choosing a suitable artificial dissipation, id(r), in the region RDIS < r < R2,
where d (r) is a real-valued nonnegative function to be specified later. The right-hand boundary condi-
tion is now defined by

Right side: u (R 2,z) = 0. (1 d)

We shall see later that there are various alternative methods for modeling the outgoing radiation condi-
tion.

Our goal is to solve approximately the following elliptic partial differential equation in the region
D, combined with boundary conditions (la) through (1d):

Au(r,z) + K'n2 (rz)[1 + id(r)]u(r,z) = 0. (2)

We have run our computer code with the following choices of parameters and functions:

g(Z) = "72 {exp [-K' (z-zo)4] -exp [-Kg2 (z+zo)2/4]1,

co = 1500 m/s, source depth z0 = 2500 m,

1 - - a2(z-z1)2 , a = I0-' m/s,
2 (Z) 21

depth of sound speed minimum z1 = 2500 m, cl= 1500 m/s, R1 = 1 m, and R2 has been chosen
thus far between 3000 and 25,000 m. The frequency f has been chosen thus far between 3 and 10 Hz.
This particular index of refraction causes a "focus" at about 20 km. Note that while the initial Gaussian
pressure field g(z) does not exactly satisfy boundary conditions (la) and (lb), these boundary condi-
tions are sufficiently closely satisfied for our choice of parameters that this causes no computational
difficulties. This model was previously run using a parabolic equation method implemented at NRL
[3], although the bottom-boundary condition in Ref. 3 differs from Eq. (lb). We have found empiri-
cally that a convenient functional form for the dissipation term, id(r), is given by

Jeg(r- RDIS)_1 for RDIS < r < R2,
d(r) = o0, for r < RDIS,

with ,B and RDIS suitably chosen, although other simple functions can work about as well. The pur-
pose of this dissipation term is to attenuate the wave while at the same time minimizing the reflection
due to the dissipation. Note: There is no difficulty in treating range- and depth-dependent sound
speeds. Also, R 1 can be chosen quite large. The input data, g, may be specified as the result of a
(long-range) parabolic equation run or some other numerical or asymptotic method. Finally, the model
problem may be readily generalized to include complicated geometries, boundary conditions, and inter-
faces. This latter point is discussed in more detail later.

The numerical algorithm we have employed to solve approximately the boundary-value problem
given by Eqs. (1) and (2) is based on the finite element method We shall not go into a technical discus-
sion of the finite-element method, since it is described extensively in the literature (see, e.g., Ref. 4).
We merely point out that the finite element method is based on replacing the given boundary-value
problem by an equivalent variational problem and then approximating the variational problem by use of
a convenient finite-dimensional space of functions. Typically, this space of functions consists of
sufficiently smooth piecewise polynomials defined with respect to a partitioning of the computational
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domain into simple subsets called elements. This reduces the variational problem to that of solving a
finite number of linear equations. As the diameter of the largest element decreases, the approximate
solution converges to the exact solution, but the number of equations to be solved increases. The com-
puter code we have implemented to solve the problem is based on continuous piecewise linear func-
tions defined on right triangles. The code can use either uniform or variable mesh sizes. Let us
observe that finite difference methods can be used just as effectively to solve the problem approxi-
mately. Finite element methods, however, are more effective for treating complicated boundaries,
interfaces, and boundary conditions.

An important, distinctive feature of our numerical algorithm and computer code is the incorpora-
tion of a recently developed iterative method [21 for solving the resulting sparse system of linear equa-
tions. The solution of this system of equations is the most expensive part of the computation. It is
well-known that iterative methods are in general considerably more efficient than direct methods (i.e.,
those based on Gaussian elimination) for large problems, with respect to both storage and computa-
tional speed. However, iterative methods have typically been developed and analyzed for positive
definite, symmetric problems (see, e.g., Ref. 5). Neither of these properties holds for the problems
currently under investigation. An iterative method based on the preconditioned conjugate gradient
method was described in Ref. 2 for a class of problems including the time-harmonic problems discussed
in this report. The preconditioner is based on one sweep of symmetric successive overrelaxation
(SSOR), although other preconditioners are being investigated. Its implementation has resulted in a
dramatic increase in storage capabilities and a dramatic decrease in computer time with respect to direct
solvers, since large, sparse matrices do not have to be stored or inverted.

Numerical Results

We next briefly describe results obtained after applying the finite element code to the boundary-
value problem given by Eqs. (1) and (2). This work concentrated on the following:

* Implementing a finite element code developed elsewhere on the VAX 11/780 in the Large
Aperture Acoustics Branch at the Naval Research Laboratory and modifying the code to
treat propagation problems such as the aforementioned one;

* Improving the code so as to increase its speed and, particularly, its storage capabilities;
and

* Testing important quantities, such as the range of artificial dissipation and the number of
grid points/wavelength needed for a prescribed accuracy, as well as the CPU time for vari-
ous choices of parameters.

It is important to emphasize that we are solving large problems on a relatively small computer.
We are now able to store and solve over 35,000 complex equations on the VAX 11/780. (When the
code was originally implemented, we were limited to about 12,000 equations.) Furthermore, the
subroutines used for the iterative method have been improved so as to make them more efficient for
use on a vector computer or an array processor. There is still a great deal that can be done to increase
the efficiency of the code. This is outlined later.

To determine the length of artificial dissipation and the number of grid points/wavelength needed,
we used measures based on the average volume intensity and average line intensity of the computed
solution. We can plot the solution as a surface, and we can plot the transmission loss vs range. We
have determined empirically, using these measures and plots, that when the length of the dissipation
layer is about two to four wavelengths, there is no significant deterioration in the solution. As for the
resolution of the waves, we observed that a minimum of 8 grid points/wavelength is necessary to
obtain a meaningful solution when a uniform grid size is used.

4
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To get an idea of the CPU time for typical runs, we consider the following sample test runs at 3,
5, and 10 Hz for R2 = 2001 m, using approximately 8 and 12 grid points/wavelength (see Table 1).
Note that as the frequency, f, is multiplied by a factor C, the number of equations is multiplied by
approximately C2 (to resolve the waves in two dimensions). Furthermore, the number of iterations
generally increases only slightly. This gives a rough idea of how the CPU time increases with frequency
for fixed range. We also observe that as the mesh size decreases from a coarse mesh (8
points/wavelength) to a finer mesh (12 points/wavelength), the number of iterations increases very
slightly or can even decrease even though the number of equations increases. This occurs because the
system of equations is better conditioned as the discrete model better approximates the continuous
model. Further study is needed to assess the accuracy of the discrete model with respect to changes in
all the parameters.

Table 1

Case f Points/ Number of Number of CPU Time
______(Hz) Wavelength Equations Iterations (min)

(a) 3 8 2,673 169 8
(b) 5 8 7,809 287 39
(c) 10 8 28,944 287 150
(d) 3 12 5,929 196 21

(e) 5 12 17,425 216 84

Next, suppose that the frequency and grid points/wavelength are fixed but the range increases by
a factor C. Hence, the time for each iteration increases by a factor C Furthermore, the number of
iterations will increase typically by a factor C', where 1 < C' < C. For example, consider case (a) in
Table 1 (3 Hz over 2000 m). We ran it over 25,000 m, so that N = 32,481. The CPU time was 414
min. (The number of iterations was multiplied by a factor of 4.) In terms of storage on the VAX, the
current version of the code can treat 5 Hz over 10,000 m or 10 Hz over 2500 m using a uniform mesh.

We next describe a factorization-mesh grading procedure developed to treat longer ranges without
increasing the storage capabilities. This method consists first of factoring out e Kr from the solution.
This results in a smoother solution as r increases and thus allows for longer range step sizes as we
proceed away from the origin. This is consistent with the approach taken when the parabolic equation
method is employed, where it is typically observed that range steps several wavelengths long suffice for
accurate far-field solutions. This approach is also analogous to a method developed and analyzed in
Ref. 6 in connection with the Helmholtz equation exterior to a bounded obstacle. In the current code,
we implemented this factorization-mesh grading procedure using larger range steps with increasing r.
Due to lack of time, we were unable to study its effectiveness comprehensively. However, preliminary
results indicated that we could substantially reduce the number of grid points without losing accuracy.
For example, we ran a problem with 3 Hz over 30,000 m using this procedure and were able to reduce
the number of range points by nearly a factor of three compared to a uniform grid with 8
points/wavelength.

Suggested Improvements and Extensions

We conclude this section by outlining several modifications that can be made to increase the capa-
bilities of the present code and shed more light on its efficiency and generality.

(1) There is no difficulty in changing the initial pressure field, g(z), and sound-speed profile,
c(r,z), in the computer code. Hence the code could be readily employed to solve a propagation prob-
lem for which the exact solution is known. For example, g(z) Icould be generated by use of a normal-
mode solution. This could be useful in obtaining more detailed information regarding the accuracy of
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the solution as important parameters are varied. Furthermore, the factorization-mesh grading pro-
cedure could be more accurately assessed since g(z) could be made to correspond to either a near- or
far-field solution. In the latter case, for example with one dominant propagation mode, we could see
how large the range steps can be made for the far-field solution. This would also enable us to study a
model problem at higher frequencies over longer ranges.

(2) The most interesting modification in the code that could be made in a relatively straightfor-
ward way would be to put in an ocean-bottom structure such as a seamount. The seamount can be
modeled by a jump in the density and sound speed across an interface, assuming the absence of shear
waves. Observe that layers in the bottom structure could be treated in an analogous fashion. The finite
element method is well suited to treat interface conditions of this kind.

To be precise, consider the interface r separating the ocean (region DO) and seamount (region
D2), illustrated in Fig. 2. We assume that the density pi is a constant in the region Di and denote the
pressure u, and sound speed c (rz), restricted to Di by ui(rz) and ci(rz), i = 1,2. The following two
interface conditions must be satisfied at each point (rz) on r:

ui(r,z) = u2(rz) (3a)

and

I 8ul(rz) , U2(rz)
Pi an = P2 - an (3b)

where 0 u/8 n denotes the normal derivative in the direction n shown in Fig. 2. A complete mathemati-
cal model for this situation may now be given by the boundary-value problem of Eqs. (1) and (2) com-
bined with interface conditions (3a) and (3b). Note: If P1/P2 = 0, this problem is reduced to a
boundary-value problem on the computationally smaller domain, D1, with boundary condition on I
given by 8ul/8n = 0. Furthermore, if P2 > > P1 it is readily seen that very little energy is transmitted

into region D2 (see, e.g., Ref. 7). Hence, we expect in this case that relatively large mesh sizes might
suffice in region D2.

u 0
z= 0-

D1

p1,c1 v j u0

D2

/ ~~~P2,C2\I
z = 5000 m- _

r= R1 au 0 r RDIS r= R2az

Fig. 2 - Region containing an interface

It would be quite informative to assess some of the modeling and computational aspects of the
present algorithm with respect to this boundary-value problem. For example, it would be interesting to
see how well the artificial dissipation models the outgoing-radiation condition. For this to be effective,
there must be no backscattering occurring in the dissipation layer. It would also be interesting to evalu-
ate the effectiveness of the iterative method and the use of variable range step sizes (after factoring out
e r) for this model. The boundary data, g, in r = R 1 might be prescribed by use of a normal-mode
solution as discussed in paragraph (1) above or by propagation with the parabolic-equation method up
to that range. Finally, note that this model is a special case of the time-harmonic fluid-solid interaction
model to be discussed in the next section.
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(3) There are various changes that could be made in the code to increase the storage capabilities
and decrease computation time. For example, higher frequencies and longer ranges could be treated by
subdividing the range into several subregions and solving the problem successively over each subre-
gion, with the computed solution over the ith subregion used as boundary data for the (i + 1)st subre-
gion. The applicability of this method may depend on sufficiently accurate solutions being obtained.

Another potential improvement in the code involves the use of a "lumping" procedure to reduce
the number of nonzero matrix elements per row from seven to five. In this case, all elements except
the diagonal could be made real. This would eliminate several large vectors of storage and probably
allow for the solution of close to 50,000 equations on the VAX. Furthermore, the computer time
would probably be reduced because of the reduction in size of several large arrays. The effect on the
convergence rate of the lumping is not clear and should be investigated.

(4) Some simple modifications in a few subroutines would put the code in a form suitable for an
array processor. This could potentially speed up the calculations considerably, provided a large enough
array processor is available. Also, since the code is, for the most part, vectorizable one can take advan-
tage of the vector capabilities of vector computers such as the CRAY-1 and CYBER 205.

Of the changes suggested here, we feel that (1) and (2) are the most important ones to be made
first. In addition, there are a number of mathematical techniques that could lead to significant improve-
ments in the computer code. These are of a longer term nature and are discussed in the next section.

GENERAL PROPAGATION MODELS

In this section we investigate various computational aspects of two- and three-dimensional time-
harmonic and transient underwater acoustic propagation models. We consider a general ocean environ-
ment in which the acoustic-wave equation in the liquid is coupled with the elastic-wave equation in the
solid. Hence, both dilatational and shear waves are permitted in the solid. For generality, let us
assume a solid structure on both the ocean surface and the bottom. For example, this may correspond
to a situation in which there is ice on the surface as well as an irregularly shaped bottom structure.

There are several mathematical formulations of the partial differential equations modeling the
fluid-solid interaction. One convenient model, discussed in Ref. 8, uses a displacement formulation of
the elastic-wave equation in both the fluid and solid regions. In the fluid region, the shear modulus is
set equal to zero. Hence, in this case the model consists of a coupled system of partial differential
equations for the unknown vector displacement. Furthermore, certain interface conditions must be
imposed at the fluid-solid boundaries. These correspond to the condition that the normal components
of the stress and displacement and the tangential component of the stress must be continuous across
the interfaces [7]. There are alternative formulations that can also be employed to model this situation.
For example, the fluid can be modeled by use of a pressure formulation or a mixed formulation in
which both the pressure and displacement vector are taken as unknowns. For a more detailed discus-
sion of various alternative formulations, as well as a comprehensive list of references, see Ref. 9.

In the time-dependent formulation, the model is a hyperbolic initial boundary value problem and
certain initial conditions must be specified. In the time-harmonic formulation, the model is an elliptic
boundary value problem. In either case, there are various ways in which we can prescribe boundary
conditions on the four sides. (See Fig. 2 for an example of the type of region we are discussing.) For
the surface of the fluid, a zero pressure condition is generally imposed. The bottom and surface bound-
ary conditions corresponding to the solid structure can be modeled in different ways, depending on the
degree of detail desired. See, e.g., Ref. 9 for different ways of modeling the bottom.

7
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The two vertical boundary conditions can also be modeled in different ways. For the left bound-
ary condition we might assume, as in the previous section, that the field is specified, perhaps as the
result of a long-range run with a simplified propagation model used. Alternatively, the loading might
be such that a plane of symmetry exists. In this case the particle motions are zero normal to the plane
of symmetry on this boundary. The right vertical boundary requires the imposition of an outgoing-
radiation (nonreflecting) boundary condition. This is an active area of research and can have an impor-
tant impact on the computations. We shall consider alternative formulations of this radiation condition
later.

The resulting computational model can be made discrete by the use of either finite difference or
finite element techniques. This typically results in a large, sparse system of linear equations. The prob-
lem size depends mainly on the frequency and the size of the computational domain. If we assume for
simplicity a uniform grid size, it is clear that if we multiply the length of the domain b;, mn, then the
number of equations is multiplied by m. However, multiplying the frequency by m results in multiply-
ing the number of equations by at least m2 and m3 in two and three dimensions, respectively, since the
waves must be resolved in each spatial direction. The frequencies and dimensions of interest depend,
of course, on the particular physical problem.

We thus see that the problem size can be quite large, particularly as the frequency increases.
(Asymptotic methods, such as ray tracing, can be effective for high frequencies. However, it is not
clear in general for which frequencies these methods yield reliable results.) In the remainder of this
section, we discuss various issues relating to the size of the propagation models that might reasonably
be solved numerically. We first consider the computer power that is currently available and that is
expected to become available in the next few years. We then discuss some mathematical techniques
that can have an important bearing on the solution of the computational models. The mathematical
methods for treating time-harmonic and transient models are very different and will be discussed
separately.

Computational Power

Because of the increasing need for large-scale, high-speed computers in many different areas of
science and engineering, there is a great deal of work proceeding with the aim of greatly increasing
computing power. We first briefly discuss the increased computer power obtainable using vector
machines such as the CRAY-I or CYBER 205. We observe in this connection that the finite-element
algorithm we described previously is, for the most part, vectorizable. The main exception is the SSOR
preconditioner used in the iterative method. We discuss later alternative preconditioners whose imple-
mentation can make the iterative method completely vectorizable. We will attempt to compare the
computational power of the CRAY-1, CRAY X-MP, and CRAY-2 with that of the VAX 11/780 used
for the computations discussed in the previous section. These comparisons are based on the best
knowledge and conjectures available to the author at this time.

The CRAY-1, currently in use, has a memory of between 2 x 106 and 4 X 106 64-bit words. The
memory available to us on the VAX was about 1 X 106 32-bit words. Note that the use of 64 bits on
the CRAY is roughly equivalent to the use of double precision on the VAX. The CRAY-1 is approxi-
mately 40 times as fast as the VAX. The CRAY X-MP is scheduled to be operating sometime in 1984
and is to be about twice as fast as the CRAY-1. Finally, the CRAY-2 is to be a substantial
improvement over the CRAY-1 in both memory and speed. Specific details at this point are not
known. However, available information indicates an improvement in speed of up to a factor of ten
compared to the CRAY-1 and a memory of 256x 106 64-bit words. We understand that it is scheduled
to be available before the end of 1985. We also understand that CDC is planning a successor to the
CYBER 205, by 1986, to consist of several processors, each processor three to five times as fast as the
205 processor.

8
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There are intense efforts under way to increase computing power by two or three orders of magni-
tude. These research efforts are based on the concept of parallel computing using several different pro-
cessors. There is an abundance of concepts for parallel computing systems as well as special purpose
computers (such as finite element machines). We shall not go into these issues but instead refer to
Ref. 10 and the references cited there for technical details. We merely remark that this research is of a
long-term nature and it is not clear when parallel computing systems will be available to deliver this
kind of computing power for realistic problems.

Let us next try to assess the feasibility of solving large problems efficiently on both the CRAY-1
and the CRAY-2. The following discussion is based on estimates obtained from a simple scaling of
problems which have already been solved. It is not possible to predict how valid this scaling is.

For the purpose of this discussion, we consider the Helmholtz model described previously over a
range of 40 km at a frequency of 40 Hz. Furthermore, we assume a uniform grid size of eight
points/wavelength although, as we have seen, we could considerably reduce the number of equations
using nonuniform grid sizes. We see from Table 1 Case (c) that for a frequency of 10 Hz and a range
of 2 km the CPU time on the VAX was 2.5 h. Let us now simply scale up this problem to 40 Hz over
40 km multiplying by 42 for the frequency increase and 20 for the range increase, using the reasoning
outlined above. We would then obtain for the large problem (consisting of nearly 107 complex degrees
of freedom), a CPU time of 800 h on the VAX, 20 h on the CRAY-1 and 2 h on the CRAY-2 (assum-
ing for the sake of definiteness that the CRAY-2 will be a factor of 10 faster than the CRAY-i). This
rough scaling neglects any increase in iterations as the size of the region increases.

There are a number of factors that cannot be predicted in advance. For one thing, it is not really
possible to predict how a given code will behave on a different computer. Furthermore, the problem is
too large to fit in the central memory of the CRAY-1. This necessitates an input/output process that
can cause a considerable increase in time. This additional time can be minimized by the use of a
numerical algorithm well designed to deal with this difficulty. This problem would be considerably less
severe for the CRAY-2, however, because of its predicted large central memory, if we assume that a
large part of its memory is available for this problem. Indications are that memory is coming down in
price, so it is to be expected that a wide range of computers will have more memory available to them.

Finally, it is anticipated that the suggested improvements outlined in the previous section and,
more important, those improvements described in the following would lead to substantial improve-
ments in the algorithm and computer code. It is not possible, however, to predict the exact degree to
which such improvements would reduce the storage requirements and CPU time. For these and other
reasons, the only way adequately to assess the parameter ranges that can be efficiently modeled is by
means of continuing numerical studies employing the best modeling and mathematical techniques avail-
able.

Time-Harmonic Models

We now discuss mathematical models corresponding to a time-harmonic source. Such models
commonly occur in underwater acoustic propagation problems [1]. Since the harmonic time depen-
dence is factored out, we are left with an elliptic boundary-value problem. This problem consists of a
system of coupled second-order elliptic partial differential equations, each analogous to the Helmholtz
equation considered previously. We proceed to discuss briefly three areas of mathematical research that

can have an important bearing on the numerical solution of these models. This is not intended to be a
comprehensive survey but merely to indicate some of the research directions that can yield fruitful
results.

9
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Radiation Boundary Conditions

To solve the problem approximately, we must introduce an artificial vertical boundary on the right
side of the computational domain (see Fig. 2) as well as an appropriate radiation (absorbing) boundary
condition to simulate the outgoing propagation of energy. This artificial boundary can intersect the fluid
domain completely, the solid domain completely, or both the fluid and the solid domains. Various
methods have been formulated for modeling radiation boundary conditions, and much research is con-
tinuirig in this area. The goal is to formulate a boundary condition that minimizes spurious reflections
that can contaminate the solution without increasing the size of the computational domain unneces-
sarily. At the same time, it is important for this formulation to be suitable for efficient implementation
and solution. The choice of the most efficient formulation is to a great extent problem dependent. For
our model problem in the previous section, we discussed the use of artificial dissipation to attenuate the
wave. This method is only applicable when no backscattering occurs. Empirical evidence indicates that
in such cases the method can be effective with only a few wavelengths of artificial dissipation.

We first assume that the artificial boundary intersects only the fluid domain, so that we consider

the acoustic-wave equation. In many cases, the radiation condition may be expressed in terms of a
modal expansion for the outgoing solution. For example, for the case of a rotationally symmetric
medium the following radiation condition was employed in combination with the finite element method
[11]:

au = T(u). (4)

Here, the expression for T(u) involves a series expansion in Hankel functions to represent outgoing
waves at the artificial boundary and au8 n is the normal derivative at this boundary. This formulation
is valid whenever the problem is separable. This occurs, for example when the sound speed is range
independent and both the upper and lower boundaries are horizontal. It is only necessary to consider a
finite number of terms in this expansion corresponding to the propagating modes. An analogous
ary condition was analyzed in Ref. 12 in connection with a variety of geometries, and it was shown that
the finite element method converges optimally in spite of the complicated nature of this boundary con-
dition.

A hierarchy of boundary conditions based on this modal expansion was employed in Ref. 2. Each
successive boundary condition in this hierarchy was constructed to be exact for successively more prop-
agation modes. Unlike condition (4), these boundary conditions are local (i.e., the normal derivative of
u at a point is given in terms of u and its tangential derivatives at that point). Hence the resulting sys-
tem of equations is sparse, which leads to certain computational advantages. When there are only one
or two propagating modes, these boundary conditions are more conveniently implemented than Eq. (4).
However, practical difficulties occur in the implementation of higher order boundary conditions due to
the presence of higher order tangential derivatives. The global condition (4) is applicable even when
there are many propagating modes.

Another hierarchy of local boundary conditions was developed and analyzed in Ref. 13 for the
time-dependent wave equation using pseudodifferential operators. These conditions are also applicable
to the Helmholtz equation [14]. The first boundary condition in this hierarchy is closely related to the
viscous boundary condition, described in Eq. (5). It is exact if the solution is a plane wave normally
incident to the artificial boundary. The higher order boundary conditions in Ref. 13 are designed to
give better approximations as the deviation from normal incidence increases. As before, however,
there are computational difficulties in implementing the high-order boundary conditions, since they
involve high-order derivatives.

Next, suppose that the artificial boundary intersects the solid domain. A convenient method for
handling the absorbing boundary condition in conjunction with the displacement formulation of the
elliptic wave equation was described in Ref. 15. A plane wave boundary condition of the form
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is applied at the artificial boundary. Here, o,, and at are the normal and tangential interface stresses, p
is the solid-medium mass density, Cd and c* are the dilatational and shear wave speeds, and vn and v,

are the corresponding normal and tangential velocities on the solid boundary surface. Conditions (5)
are exact if the radiating energy at the surface consists of plane waves that are normally incident to the
surface. It was pointed out in Ref. 15 that these boundary conditions can still be accurate even when
this condition does not hold. The artificial boundary acts as if viscous dampers have been applied nor-
mally and tangentially to the solid-domain boundary points. When the dominant waves traveling
through the media were Rayleigh waves rather than plane waves, an analogous boundary condition was
applied in Refs. 15 and 16. The boundary conditions in Eq. (5) were also applied to treat the case in
which the artificial boundary intersects both the fluid and solid media [9]. Empirical evidence indicates
that these boundary conditions can give satisfactory results if they are located far enough from the
source force functions [17,181.

Finally, we note that there are various alternative methods for treating the unbounded region,
such as the use of infinite elements [191. In this case, the usual piecewise polynomial basis functions are
replaced by special functions in the outermost layer of elements. These infinite elements are chosen so
as to simulate the behavior of the solution near infinity. Another approach for treating unbounded
domains consists of coupling the finite element method with an integral operator on the outer boundary
[20]. The Green's function for the integral operator simulates the behavior of the solution near
infinity. For additional methods for treating radiation boundary conditions, see Refs. 9 and 14.

Adaptive Discretization Methods

1Ko solve the resulting elliptic boundary-value problem approximately, we must discretize this
problem. Generally, this may be efficiently done by a variety of finite difference or finite element
methods. Finite element methods are better suited to treating the complicated boundaries and bound-
ary conditions that often arise in the propagation problems considered here. Because of their great
flexibility in modeling complicated problems, we recommend the use of finite element methods. It is
not clear, at the present time, whether high-order or low-order methods would be more efficient for
these problems. This question needs to be investigated further.

Adaptive computational methods have recently proved to be a powerful tool in the numerical
solution of partial differential equations, and considerable research is continuing along these lines.
These algorithms have built into them convenient methods for obtaining measures of accuracy and
adapting the discretization automatically to the evolving solution, so as to obtain a desired level of accu-
racy with a minimum of arithmetic operations. These algorithms automatically provide for smaller
mesh sizes in a region where the solution is not smooth (e.g., where there is a large velocity or density
gradient) and larger mesh sizes when the solution is smooth. Recently developed adaptive discretiza-
tion methods have resulted in significant improvements in the numerical solution of elliptic boundary-
value problems in elasticity and other areas (see Refs. 21 and 22, and the references cited there.)

We feel that the use of adaptive methods can also lead to dramatic improvement in the numerical
solution of underwater acoustic propagation problems. As we have demonstrated (in a previous sec-
tion, in Ref. 6, and in Ref. 23), the use of nonuniform grid sizes in connection with the Helmholtz
equation can lead to improved accuracy with considerably fewer grid points. Adaptive methods provide
an efficient means of changing the mesh sizes (and other important parameters) systematically in a
nearly optimal manner. Furthermore, the adaptive method provides a means for assessing the accuracy
of the computed solution. Hence, another potential advantage is that the error due to various
simplified propagation models may be conveniently determined.
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Iterative Methods

The finite element or finite difference discretization of our model results in a sparse, indefinite,
non-self-adjoint system of linear equations. As we have mentioned previously, iterative solution
methods are far superior to direct methods for very large problems. However, standard iterative
methods are not applicable to systems that are indefinite and non-self-adjoint. The iterative method
discussed previously in connection with the Helmholtz equation is also applicable to the more-general
boundary-value problems considered here. It is based on the conjugate gradient method applied to the
normal equations with an appropriate preconditioning (see Ref. 2). The performance of the iterative
method has a significant bearing on the cost of the computation. Hence, the study of preconditioned
conjugate gradient methods and other iterative methods in connection with elliptic boundary-value
problems is receiving a great deal of attention (see, e.g., Refs. 24 and 25). We shall briefly consider
ways of potentially improving the iterative method described previously.

The choice of preconditioner in the preconditioned conjugate gradient method is crucial in deter-
mining the number of iterations required for a desired accuracy and, hence, the amount of computa-
tion. Another important factor is the method in which the preconditioner is implemented in the conju-
gate gradient method. Thus far we have only implemented a preconditioner based on one sweep of
SSOR in connnection with the problem of Eqs. (1) and (2). As demonstrated in Refs. 2 and 26, the
number of iterations using this preconditioner grows as 0(h- 1) as the mesh size h - 0. There are
several alternative preconditioners that have proved to be quite effective in connection with the conju-
gate gradient method [24]. Some of these are currently being investigated in connection with the
Helmholtz equation [261, and in theory appear to exhibit a faster convergence rate than SSOR for small
mesh sizes. For example, it can be seen theoretically that a preconditioner based on a fast solver (such
as a multigrid method) has a convergence rate that is independent of h. Hence the number of
iterations is indpendent of h and such a preconditioner would appear to be superior for sufficiently small
mesh sizes.

It remains to be seen whether preconditioners that are more effective as h - 0 will be more

effective in realistic underwater acoustic problems. There are many other factors that play a role in the
choice of preconditioners, such as their behavior with respect to the wave number and boundary condi-
tions. Finally, we recall that, to utilize fully the capabilities of vector computers such as the CRAY-1
or CYBER 205, the algorithm should be vectorizable. This is not the case of the preconditioners we
have implemented thus far. For examples of preconditioned conjugate gradient methods that have
been vectorized, see Refs. 27 and 28. The choice of an optimal preconditioner for a given class of
problems and a given computer can be complicated, but it can be important in reducing the cost of the
computation.

Time-Dependent Models

Time-dependent models are most appropriate when the structure is subjected to a transient force
as a pulse. This is commonly the case, for example, in seismology. The mathematical model in such
cases is an initial-boundary-value problem for a coupled system of wave equations. This hyperbolic
problem is different mathematically from the elliptic problem associated with the time-harmonic model
and hence requires different computational methods for its solution. We shall very briefly discuss some
of these methods as well as some ways of potentially speeding up the computations.

Boundary Conditions

As for the time-harmonic model,. there are different formulations of the radiation condition on an
artificial outer boundary. It is important to choose the most appropriate one for a given problem. Typi-
cal formulations for the time-dependent model are based on local, approximate absorbing boundary
conditions. Viscous damper boundary conditions such as those described in Eq. (5), are commonly
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used. However, they require that the artificial boundary be placed sufficiently far away from the source
of excitation so that reflections are not pernicious. A hierarchy of local, approximate boundary condi-
tions was developed in Ref. 13 for the acoustic-wave equation and in Ref. 29 for the elastic-wave equa-
tion. As in the case of the viscous boundary condition, the accuracy of these boundary conditions
depends on the deviation of the wave from normal incidence at the artificial boundary. The higher
order conditions are more accurate, and hence the size of the computational domain may be decreased.
However, they are more difficult to implement.

Finally, we mention a boundary-condition approach developed in Ref. 30 to eliminate reflections
for transient problems. This method is based on the calculation of two independent solutions in which
the reflections are of opposite sign. The addition of these solutions cancels the reflections, leaving only
the energy originally incident on the boundary. The two solutions may be obtained, for example, by
appling homogeneous Dirichlet and Neumann boundary conditions.

Discretization Methods

We next consider the question of discretizing the resulting initial-boundary-value problem. Now
we must consider the time discretization in addition to the spatial discretization. As before the spatial
variables may be discretized using either a finite difference or finite element method. As for the time
discretization, empirical experience indicates that explicit finite difference time discretizations are more
efficient than implicit ones in spite of stability constraints (see Refs. 8 and 31), since the latter method
involves the solution of linear equations at each time step. Explicit formulations express the value of a
variable at some point at a future time in terms of the value of the variable at that point and neighbor-
ing points at the present time and past times. Hence, it is no longer necessary to solve large systems of
linear equations. The large computation time for these problems is due mainly to the large number of
time steps required and the large number of spatial variables.

We propose two methods for reducing these computational costs. The first suggestion is the use
of an adaptive discretization method. In a previous section we described the potential advantages asso-
ciated with such methods. Adaptive methods appropriate for hyperbolic problems are different from
those most useful for elliptic problems. See Ref. 32 and the references cited there for a discussion of
adaptive discretization methods for time-dependent problems. The second suggestion is the use of
higher order discretization methods in the spatial variables. As demonstrated in Ref. 33, significant
gains can be expected from the use of higher order methods. These include higher order finite
difference and finite element methods as well as spectral methods. Recent work [34] dealing with the
discretization error as the number of wavelengths increases (i.e., at high frequencies or in large
domains) indicates that, particularly in these cases, higher order spatial discretization can yield substan-
tial improvements for both transient and stationary propagation models. On the other hand, as indi-
cated in Ref. 33, it often suffices to use a second-order time-discretization method.

CONCLUSIONS

We have considered the numerical solution of direct deterministic underwater acoustic-
propagation problems using finite difference and finite element methods. We first discussed results
obtained after implementing a finite element code on a VAX 11/780 and modifying it to treat a propa-
gation model based on the two-dimensional Helmholtz equation with a variable sound speed. An
important feature of the code is the implementation of a recently developed iterative method based on
the preconditioned conjugate gradient method for solving the resulting large, sparse, indefinite, non-
self-adjoint system of linear equations. Since large matrices do not have to be stored or inverted, we
were able to solve efficiently over 35,000 complex equations. Furthermore, simple changes in the code
were outlined that would substantially increase both storage capabilities and speed.
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We next discussed various issues involved in the numerical solution of general two- and three-
dimensional propagation models. Such models involve the coupling of the acoustic-wave equation in a
fluid with the elastic-wave equation in a solid and the specification of appropriate interface and bound-
ary conditions. This allows for the computational modeling of general ocean environments, including
complicated bottom structures as well as a layer of ice on the surface. We considered time-harmonic
(stationary) formulations, which commonly occur in underwater acoustic models, as well as time-
dependent formulations corresponding to a transient force such as a pulse. The resulting models may
be solved approximately by finite difference or finite element methods.

The numerical methods for treating stationary and transient problems are very different. For tran-
sient problems, explicit finite difference time discretizations appear to be more efficient than implicit
ones, since the latter involve the solution of linear equations at each time step. For stationary prob-
lems, we recommend the use of iterative methods over direct methods. For both stationary and tran-
sient formulations we recommend the use of finite element methods for the spatial discretization
because of their great flexibility in modeling complicated problems.

The size of the problem depends to a large extent on the frequency and the size of the computa-
tional domain. In particular, because the waves must be resolved in all directions, the number of
degrees of freedom in two (or three) dimensions generally increases as at least the square (or cube) of
the frequency. The size of the problem that can be efficiently treated depends on the computer power
available as well as the mathematical modeling techniques and the numerical algorithm employed. Vec-
tor computers are expected to improve current computer power by approximately a factor of ten over
the next few years. Longer term research in multiprocessor systems is intended to result in improve-
ments of two and three orders of magnitude. The numerical methods we have discussed based on
finite elements or finite differences are well suited to parallel computation.

Furthermore, we described several mathematical modeling and numerical investigations that are
expected to result in substantial improvements in computational efficiency. These include the use of
methods for modeling the radiation boundary condition so as to reduce the size of the truncated
computational domain, the use of techniques for improving the iterative method, and the use of adap-
tive discretization methods. Numerical methods can also be useful for assessing the accuracy of various
simplified propagation models. We feel that, at the present time, a variety of complicated, realistic,
two-dimensional propagation problems can be efficiently solved by numerical methods without the
necessity of resorting to simplified models. Furthermore, in view of anticipated improvements in com-
puter power and numerical methods, it is likely that the same will be true for three-dimensional and
much larger two-dimensional problems within a few years.
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